

A Discussion of Learning Representation The 2th Squad of Feature Engineering

Data Mining Lab, Big Data Research Center, UESTC Email: huangchen.uestc@gmail.com

Table of Contents

1. Learning Representation

2. Learning Representation

Draw an apple

≻Feature is the general answer for "What's this ? "

So, what does representation means in data mining?

Feature \rightarrow Numeric Abstraction (almost)

めのRe 数据挖掘实验室
 Data Mining Lab

- Feature is the general answer for "What's this ?"
 Some tricky cases:
- Nominal attribute

[One-hot coding]: excellent\good\bad \rightarrow 001\010\100

• Structured object

Sentences, pics, sequential data, networks

Word Embedding

php Show nearest java html PHP HTML wordpress www server MySQL javascript google

Given a word, this demo shows a list of other word:

Feature \rightarrow Numeric Abstraction (almost)

数据挖掘实验室 Data Mining Lab

- Feature is the general answer for "What's this ? "
 Some tricky cases:
 - Nominal attribute

[One-hot coding]: excellent\good\bad \rightarrow 001\010\100

• Structured object

Sentences, pics, sequential data, networks

- Discretize or not
- Missing value

Drop it, fill it or just leave it be?

- Ordered feature ?????
- 3.1 排序特征

对原始特征中 1045 维 numeric 类型的特征从小到大进行排序,得到 1045 维排序特征。 排序特征对异常数据都有较强的鲁棒性,使得模型更加稳定,降低过拟合的风险。 Feature is the general answer for "What's this?"
Label is the general answer for "What's your name?"

- i -	成分名称	含量	成分名称
	可食部分	86%	水分 (g)
5114.28	能量(kJ)	200	蛋白质 (g)
· 🔛 i	碳水化合物 (g)	13.6	膳食纤维 (g)
90 Xin 10	灰份(g)	0.2	维生素A(mg)
	视黄醇(mg)	0	硫胺素(µg)
	尼克酸 (mg)	0.2	维生素C(mg

annla

数据挖掘实验室

Data Mining Lab

≻What is model ?

General answer for "How do they behave in <u>this</u> way?"

Feature V.S. Model

- Unsupervised learning is subjective
- Supervised learning is objective

"We know it when we see it"

Feature — Model Similarity?

Feature V.S. Model

Good representation Bad model Good representation Good model

Bad representation Good model

Learning Representation / Features

>What's learning representation?

Don't panic ! You already know...

 $X_{new} = f(X)$ or $X_{new} = f(X, Y)$ where **X**, **Y** is from one source or many

Motivation

• Find a better representation (*for similarity measure or others*)

≻"better" how?

• What's wrong with my current representation?

What's your definition of "better"?

- > What's your ideal form of representation?
- > What do you want?

数据挖掘实验室

Data Mining Lab

What's your definition of "better" ?

- Task-driven / Model-driven
 - Classification, clustering, ranking
 - Whatever is best for your task
- > Interpretability
- Non-negative, ...
- Visualization / Storage
- Numerical calculation / Fast convergence / Tuning
 - Normalization, Whiten, ...

➤Additional prior

- Compositionality is useful to describe the world around us efficiently
- To tell us the data generating distribution and recover a set of latent variables that describe a distribution over the observed data
- *Help non-supervision be less subjective...

In your field, what's the hypothesis you want?

数据挖掘实验室

Data Mining Lab

Hypothesis of "better"

- ➢ Example
- What is the hypothesis of PCA?

List of the hypothesis you want (maybe)

- Sparse representation
- Low rank representation
- Common / Semantic space
- Dimension reduction / Kernel
- High-level / Deep features
- Temporal and spatial couple / coherence
- Structure-specified features
- Features decorrelation
- Discriminative features
- Separate manifolds/ clusters
- Normalization

Mathematic language of hypothesis

数据挖掘实验室

Data Mining Lab

Sparse representation

数据挖掘实验室

Data Mining Lab

How to make our new presentation sparse?

Sparse representation

 \succ L0 (*it'll do, if you could solve it...*)

Generalized lasso

 $\min_{X_{new}} f(X_{new}) + \lambda \|DX_{new}\|_1$

Data (noisy image)

Solution (denoised image)

*Clustering

数据挖掘实验室

Data Mining Lab

Categorical variables are associated with separate manifolds, is it a discrete sparse representation?

$$z_n^{(t)} = \arg \max_k (x_n - \mu_k^{(t)})^T \Sigma_k^{-1(t)} (x_n - \mu_k^{(t)})$$

$$\min_{\mathcal{D}, s} \sum_i ||\mathcal{D}s^{(i)} - x^{(i)}||_2^2$$

subject to $||s^{(i)}||_0 \le 1, \forall i$
and $||\mathcal{D}^{(j)}||_2 = 1, \forall j$

$$\min_{\mathcal{D}, s} \sum_i ||\mathcal{D}s^{(i)} - x^{(i)}||_2^2 + \lambda ||s^{(i)}||_1$$

subject to $||\mathcal{D}^{(j)}||_2 = 1, \forall j$.

Low Rank

- > Why low rank ????
 - **2D sparsity**, being sparse while coherent with other instances
 - Reducing correlation
- ➤ How to get there ???
 - Nuclear norm

LR in your field??

Deep representation

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	S
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	C

Feature Map

Blank boxWhy it work

Input

Discriminative Features

> We put constraints on labels !

Temporal and spatial coherence

Slow-feature Analysis

Objective : Extract **Slow Feature** from **Time series data** .

Pre-processing 1 - rescale

- Normalization
 - Why normalization ?
 - \rightarrow Weka experiment
 - → Training: 1000, Test: 500, 242 dimensions with SVM

数据挖掘实验室

Data Mining Lab

	Original	Normalized
Time building model	13.29s	8.89s
Correctly classified	76(14.902%)	350(68.6275%)
Incorrectly classified	434(85.098%)	160(31.3725%)

数据挖掘实验室

Data Mining Lab

Pre-processing 2 – feature decorrelation

- Why whiten ?
- Feature decorrelation

Ending

Representation

- What is feature
- Feature V.S. model

Learning representation

- What is good feature
- How to learn a good feature
- 1. By hypothesis
- 2. In action

数据挖掘实验室

Thanks

